Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Viruses ; 14(12)2022 12 17.
Article in English | MEDLINE | ID: covidwho-2163629

ABSTRACT

BACKGROUND AND METHODS: To investigate virus diversity in hot zones of probable pathogen spillover, 54 oral-fecal swabs were processed from five bat species collected from three cave systems in Kenya, using metagenome sequencing. RESULTS: Viruses belonging to the Astroviridae, Circoviridae, Coronaviridae, Dicistroviridae, Herpesviridae and Retroviridae were detected, with unclassified viruses. Retroviral sequences were prevalent; 74.1% of all samples were positive, with distinct correlations between virus, site and host bat species. Detected retroviruses comprised Myotis myotis, Myotis ricketti, Myotis daubentonii and Galidia endogenous retroviruses, murine leukemia virus-related virus and Rhinolophus ferrumequinum retrovirus (RFRV). A near-complete genome of a local RFRV strain with identical genome organization and 2.8% nucleotide divergence from the prototype isolate was characterized. Bat coronavirus sequences were detected with a prevalence of 24.1%, where analyses on the ORF1ab region revealed a novel alphacoronavirus lineage. Astrovirus sequences were detected in 25.9%of all samples, with considerable diversity. In 9.2% of the samples, other viruses including Actinidia yellowing virus 2, bat betaherpesvirus, Bole tick virus 4, Cyclovirus and Rhopalosiphum padi virus were identified. CONCLUSIONS: Further monitoring of bats across Kenya is essential to facilitate early recognition of possibly emergent zoonotic viruses.


Subject(s)
Alphacoronavirus , Astroviridae , COVID-19 , Chiroptera , Herpesviridae , RNA Viruses , Animals , Astroviridae/genetics , Kenya/epidemiology , Phylogeny , Retroviridae , RNA Viruses/genetics , SARS-CoV-2
2.
Lancet Planet Health ; 6(9): e760-e768, 2022 09.
Article in English | MEDLINE | ID: covidwho-2008222

ABSTRACT

The emergence of COVID-19 has drawn the attention of health researchers sharply back to the role that food systems can play in generating human disease burden. But emerging pandemic threats are just one dimension of the complex relationship between agriculture and infectious disease, which is evolving rapidly, particularly in low-income and middle-income countries (LMICs) that are undergoing rapid food system transformation. We examine this changing relationship through four current disease issues. The first is that greater investment in irrigation to improve national food security raises risks of vector-borne disease, which we illustrate with the case of malaria and rice in Africa. The second is that the intensification of livestock production in LMICs brings risks of zoonotic diseases like cysticercosis, which need to be managed as consumer demand grows. The third is that the nutritional benefits of increasing supply of fresh vegetables, fruit, and animal-sourced foods in markets in LMICs pose new food-borne disease risks, which might undermine supply. The fourth issue is that the potential human health risks of antimicrobial resistance from agriculture are intensified by changing livestock production. For each disease issue, we explore how food system transition is creating unintentional infectious disease risks, and what solutions might exist for these problems. We show that successfully addressing all of these challenges requires a coordinated approach between public health and agricultural sectors, recognising the costs and benefits of disease-reducing interventions to both, and seeking win-win solutions that are most likely to attract broad policy support and uptake by food systems.


Subject(s)
COVID-19 , Communicable Diseases , Animals , COVID-19/epidemiology , Communicable Diseases/epidemiology , Developing Countries , Humans , Poverty , Public Health
3.
Lancet Glob Health ; 10(4): e579-e584, 2022 04.
Article in English | MEDLINE | ID: covidwho-1740333

ABSTRACT

The COVID-19 pandemic has underscored the need to strengthen national surveillance systems to protect a globally connected world. In low-income and middle-income countries, zoonotic disease surveillance has advanced considerably in the past two decades. However, surveillance efforts often prioritise urban and adjacent rural communities. Communities in remote rural areas have had far less support despite having routine exposure to zoonotic diseases due to frequent contact with domestic and wild animals, and restricted access to health care. Limited disease surveillance in remote rural areas is a crucial gap in global health security. Although this point has been made in the past, practical solutions on how to implement surveillance efficiently in these resource-limited and logistically challenging settings have yet to be discussed. We highlight why investing in disease surveillance in remote rural areas of low-income and middle-income countries will benefit the global community and review current approaches. Using semi-arid regions in Kenya as a case study, we provide a practical approach by which surveillance in remote rural areas can be strengthened and integrated into existing systems. This Viewpoint represents a transition from simply highlighting the need for a more holistic approach to disease surveillance to a solid plan for how this outcome might be achieved.


Subject(s)
COVID-19 , Global Health , Developing Countries , Humans , Pandemics , Poverty
4.
Am J Trop Med Hyg ; 103(5): 1777-1779, 2020 11.
Article in English | MEDLINE | ID: covidwho-761006

ABSTRACT

The effects of COVID-19 have gone undocumented in nomadic pastoralist communities across Africa, which are largely invisible to health surveillance systems despite the fact that they are of key significance in the setting of emerging infectious disease. We expose these landscapes as a "blind spot" in global health surveillance, elaborate on the ways in which current health surveillance infrastructure is ill-equipped to capture pastoralist populations and the animals with which they coexist, and highlight the consequential risks of inadequate surveillance among pastoralists and their livestock to global health. As a platform for further dialogue, we present concrete solutions to address this gap.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Population Surveillance/methods , Transients and Migrants , Africa/epidemiology , Animals , COVID-19 , Communicable Diseases, Emerging/epidemiology , Delivery of Health Care , Ecosystem , Health Policy , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL